Как называется третий закон ньютона. Законы ньютона


Силы взаимодействия тел

Замечание 1

Известно, что не бывает одностороннего действия одного тела на другое, тела всегда взаимодействуют друг с другом. Например, во время забивания гвоздя не только молоток действует на гвоздь, но и гвоздь, в свою очередь, действует на молоток, в результате чего молоток останавливается.

Выясним, с какими силами два тела действуют друг на друга. Для этого рассмотрим такие опыты.

Рисунок 1.

На рисунке 1 изображены два сцепленных друг с другом динамометра, один из которых прикреплен к вертикальной стойке С. Если потянуть за другой динамометр, то пружины обоих приборов растянутся и будут действовать друг на друга силами упругости $\overline{F}_{1} $~и $\overline{F}_{2} $, направленными в противоположные стороны. При этом показания динамометров будут одинаковы - значит, модули сил $F_{1} $, и $F_{2} $~равны.

Если за правый динамометр потянуть сильнее, то показания обоих динамометров возрастут на одну и ту же величину, т. е. опять будут равны друг другу. Значит, и в этом случае динамометры взаимодействуют с одинаковыми по модулю силами.

Тела действуют друг на друга с равными по модулю силами и в том случае, если взаимодействие происходит на расстоянии. Опыт, доказывающий это, изображен на рисунке 2.

На нем мы видим два демонстрационных динамометра на штативе. На стержни динамометров надеты круглые столики, к которым клейкой лентой прикреплены плоские керамические магниты. Магниты отталкиваются, поскольку обращены друг к другу одноименными полюсами. До начала опыта динамометры были разведены на такое расстояние, при котором силы взаимодействия магнитов были практически равны нулю и не регистрировались динамометрами.

Когда один из динамометров стали приближать к другому, их стрелки начали отклоняться от нуля в разные стороны. Это означает, что силы, с которыми магниты действуют друг на друга, противоположны по направлению.

Рисунок 2.

При сближении магнитов показания динамометров возрастают, но в каждый момент они равны друг другу --- значит, магниты отталкиваются с равными по модулю силами.

Теперь рассмотрим опыт, в котором силы взаимодействия измеряются в процессе движения взаимодействующих тел. На рисунке 3 изображен самодвижущийся игрушечный трактор, который тянет на буксире металлическую коробку с грузом. В качестве буксирного троса использованы сцепленные друг с другом трубчатые динамометры, один из которых прикреплен к трактору, а второй - к коробке. Показания динамометров одинаковы, значит, движущиеся трактор и коробка действуют друг на друга с равными по модулю силами.

Рисунок 3.

Проделанные опыты свидетельствуют о том, что \textbf{силы, с которыми два тела действуют друг на друга, равны по модулю и противоположны по направлению.}

Этот закон был открыт Ньютоном и называется третьим законом Ньютона.

Третий закон Ньютона

Математическая запись третьего закона Ньютона имеет следующий вид:

Знак минус показывает, что векторы сил направлены в разные стороны.

Любое из наблюдаемых нами движений различных тел можно объяснить с помощью законов Ньютона. Например, идущий человек движется вперед благодаря тому, что он отталкивается ногами от земли, т. е. взаимодействует с ней. Человек и земля действуют друг на друга с одинаковыми по модулю и противоположно направленными силами и получают ускорения, обратно пропорциональные их массам. Поскольку масса Земли огромна по сравнению с массой человека, то ускорение Земли практически равно нулю, т. е. она не меняет свою скорость. Человек же приходит в движение относительно Земли.

Замечание 2

Следует отметить, что силы, возникающие в результате взаимодействия тел, являются силами одной и той же природы. Например, Земля и Луна взаимодействуют друг с другом посредством сил всемирного тяготения, стальной гвоздь и магнит притягиваются благодаря действию магнитных сил.

Примеры сил взаимодействия:

  • сила гравитационного притяжения двух тел;
  • силы притяжения и отталкивания двух магнитов;
  • силы притяжения и отталкивания двух электрически заряженных тел;
  • силы притяжения нуклонов в атомной ядре;
  • силы, возникающие при упругой деформации;
  • силы взаимодействия молекул.

Замечание 3

Следует помнить, что силы, о которых говорится в третьем законе Ньютона, никогда не уравновешивают друг друга, поскольку они приложены к разным телам. Две равные по модулю и противоположно направленные силы уравновешивают друг друга в том случае, если они приложены к одному телу. Тогда их равнодействующая равна нулю, и тело при этом находится в равновесии, т. е. либо покоится, либо движется равномерно и прямолинейно.

Пример 1

\item Две девочки катаются на скейтах, причем вторая девочка катается вместе со своим братом. Оттолкнувшись друг от друга, девочки приобрели противоположно направленные ускорения, равные

$a_{1} =2$м/с2 и $a_{2} =1,5$м/с2 соответственно. Зная массу обеих девочек $m_{1} =45$кг и $m_{2} =32$кг, вычислите массу брата.

$m_{1} =45$кг, $m_{2} =32$кг, $a_{1} =2 \ м/c^2$, $a_{2} =1,5 \ м/c^2.$

Найти: $m$-?

Решение: Девочки, оттолкнувшись, приобрели ускорения, которые направлены по одной прямой в противоположные стороны и подействовали друг на друга с силами, которые имеют одинаковые модули и противоположные направления:

\[\overline{F}_{1} =-\overline{F}_{2} \]

Запишем второй закон Ньютона для движущихся девочек:

$F_{1} =m_{1} a_{1} $ - сила, с которой вторая девочка вместе с братом действуют на первую девочку.

$F_{2} =(m_{2} +m)a_{2} $ - сила, с которой первая девочка действует на вторую девочку.

Подставив выражения для сил в выражение для третьего закона Ньютона, найдем массу брата:

$m=\frac{m_{1} a_{1} -m_{2} a_{2} }{a_{2} } =28$кг

ОПРЕДЕЛЕНИЕ

Формулировка третьего закона Ньютона . Два тела действуют друг на друга с , равными по модулю и противоположными по направлению. Эти силы имеют одну и ту же физическую природу и направлены вдоль прямой, соединяющей их точки приложения.

Описание третьего закона Ньютона

Например, книга, лежащая на столе, действует на стол с силой, прямо пропорциональной своей и направленной вертикально вниз. Согласно третьему закону Ньютона стол в это же время действует на книгу с абсолютно такой же по величине силой, но направленной не вниз, а вверх.

Когда яблоко падает с дерева, это Земля действует на яблоко силой своего гравитационного притяжения (вследствие чего яблоко равноускоренно движется к поверхности Земли), но при этом и яблоко притягивает к себе Землю с такой же силой. А то, что нам кажется, что это именно яблоко падает на Землю, а не наоборот, является следствием . Масса яблока по сравнению с массой Земли мала до несопоставимости, поэтому именно яблока заметно для глаз наблюдателя. Масса же Земли, по сравнению с массой яблока, огромна, поэтому ее ускорение практически незаметно.

Аналогично, если мы пинаем мяч, то мяч в ответ пинает нас. Другое дело, что мяч имеет намного меньшую массу, чем тело человека, и потому его воздействие практически не чувствуется. Однако если пнуть тяжелый железный мяч, ответное воздействие хорошо ощущается. Фактически, мы каждый день по многу раз «пинаем» очень и очень тяжелый мяч — нашу планету. Мы толкаем ее каждым своим шагом, только при этом отлетает не она, а мы. А все потому, что планета в миллионы раз превосходит нас по массе.

Таким образом, третий закон Ньютона утверждает, что силы как меры взаимодействия всегда возникают парами. Эти силы не уравновешиваются, так как всегда приложены к разным телам.

Третий закон Ньютона выполняется только в и справедлив для сил любой природы.

Примеры решения задач

ПРИМЕР 1

Задание На полу лифта стоит груз массой 20 кг. Лифт движется с ускорением м/с , направленным вверх. Определить силу, с которой груз будет действовать на пол лифта.
Решение Сделаем рисунок

На груз в лифте действуют сила тяжести и сила реакции опоры .

По второму закону Ньютона:

Направим координатную ось , как показано на рисунке и запишем это векторное равенство в проекциях на координатную ось:

откуда сила реакции опоры:

Груз будет действовать на пол лифта с силой, равной его весу. По третьему закону Ньютона, эта сила равна по модулю силе, с которой пол лифта действует на груз, т.е. силе реакции опоры:

Ускорение свободного падения м/с

Подставив в формулу численные значения физических величин, вычислим:

Ответ Груз будет действовать на пол лифта с силой 236 Н.

ПРИМЕР 2

Задание Сравнить модули ускорений двух шаров одинакового радиуса во время взаимодействия, если первый шар сделан из стали, а второй – из свинца.
Решение Сделаем рисунок

Сила удара, с которой второй шар действует на первый:

а сила удара, с которой первый шар действует на второй:

По третьему закону Ньютона, эти силы противоположны по направлению и равны по модулю, поэтому можно записать.

Всякое действие тел друг на друга носит характер, взаимодействия: если тело 1 действует на тело 2 с силой то и тело 2 в свою очередь действует на тело 1 с силой

Третий закон Ньютона утверждает, что силы, с которыми действуют друг на друга взаимодействующие равны по величине и противоположны по направлению. Используя приведенные выше обозначения сил, содержание третьего закона можно представить в виде равенства:

Из третьего закона Ньютона вытекает, что силы возникают попарно: всякой силе, приложенной к какому-то телу, можно сопоставить равную ей по величине и противоположно направленную силу, приложенную к другому телу, взаимодействующему с данным.

Третий закон Ньютона бывает справедлив не всегда. Он выполняется вполне строго в случае контактных взаимодействий (т. е. взаимодействий, наблюдающихся при непосредственном соприкосновении тел), а также при взаимодействии находящихся на некотором расстоянии друг от друга покоящихся тел.

В качестве примера нарушения третьего закона Ньютона может служить система из двух заряженных частиц движущихся в рассматриваемый момент так, как показано на рис. 11.1. В электродинамике доказывается, что, кроме подчиняющейся третьему закону силы электростатического взаимодействия на первую частицу будет действовать магнитная сила На вторую же частицу действует лишь сила равная Величина магнитной силы, действующей на вторую частицу, для изображенного на рисунке случая равна нулю.

Отметим, что при скоростях частиц, много меньших скорости света в пустоте (при ), сила F пренебрежимо мала по сравнению с силой так что третйй закон Ньютона оказывается практически справедливым и в этом случае.

Теперь рассмотрим систему из двух электрически нейтральных частиц удаленных друг от друга на расстояние . Вследствие всемирного тяготения эти частицы притягивают друг друга с силой

В данном случае взаимодействие частиц осуществляется через гравитационное поле. Скажем, первая частица создает в окружающем ее пространстве поле, которое проявляет себя в том, что на помещенную в какую-либо точку этого поля частицу действует сила притяжения к первой частице. Аналогично вторая частица создает поле, которое проявляет себя в действии на первую частицу. Опыт дает, что изменения поля, обусловленные, например, изменением положения создающей поле частицы, распространяются в пространстве не мгновенно, а с хотя и очень большой, но конечной скоростью, равной скорости света в пустоте с.

Предположим, что первоначально частицы покоятся в положениях 1 и 2 (рис. 11.2). Силы взаимодействия равны по величине и противоположны по направлению. Теперь пусть частица очень быстро (со скоростью, почти равной с) сместится в положение . В этой точке на частицу будет действовать сила меньшая по величине. и иначе направленная, чем (напомним, что поле частицы остается неизменным). На, вторую же частицу, пока возмущение поля, вызванное смещением не достигнет точки 2, будет продолжать действовать сила Следовательно, пока двигалась частица течение некоторого времени после того, как она остановилась в точке 1, третий закон Ньютона был нарушен.

Если бы частица перемещалась из точки 1 в точку Г со скоростью V, много меньшей или скорость распространения возмущений поля была бесконечно большой, то мгновенные значения поля в точке 2 отвечали бы положениям частицы в, тот же момент времени, и следовательно, нарушений третьего закона не наблюдалось бы.

Ньютоновская механика вообще справедлива лишь для скоростей движения, много меньших скорости света (при ). Поэтому в рамках этой механики скорость распространения возмущений поля считается бесконечной, а третий закон Ньютона выполняющимся всегда.

На этом уроке мы изучим третий закон Ньютона, в котором описываются силы взаимодействия двух тел. Также вспомним основные сведения о первом и втором законе Ньютона. Помимо этого, мы вспомним основной экспериментальный закон динамики, рассмотрим принцип относительности Галилея. В конце урока узнаем, как применять третий закон Ньютона при разборе качественных задач.

Известно, что при взаимодействии оба тела воздействуют друг на друга. Не бывает такого, чтобы одно тело толкнуло другое, а второе в ответ никак не отреагировало бы.

Проведем эксперимент. Возьмем два динамометра (рис. 1). Один из них наденем колечком на что-то неподвижное, например на гвоздь в стене, а второй соединим с первым крючками. Потянем за колечко второго динамометра. Оба прибора покажут одинаковые по модулю силы натяжения.

Рис. 1. Опыт с динамометрами

Другой пример. Представьте, что вы и ваш друг катаетесь на скейте, причем друг катается на одном скейте с братом (рис. 2).

Рис. 2. Приобретение ускорения при взаимодействии

Ваша масса - , масса друга с братом - . Если вы отталкиваетесь друг от друга, то приобретаете ускорения, которые направлены по одной прямой в противоположные стороны . Отношение масс участников этого процесса обратно пропорционально отношению модулю ускорений.

Следовательно:

Согласно второму закону Ньютона:

Сила, с которой на вас действует друг с братом

Сила, с которой вы действуете на друга с братом

Так как ускорения противонаправленные, то:

Данное равенство выражает третий закон Ньютона : тела действуют друг на друга с силами, которые имеют одинаковые модули и противоположные направления (рис. 3).

Рис. 3. Третий закон Ньютона

Основной экспериментальный закон динамики

При выводе третьего закона Ньютона мы видели, что при взаимодействии двух тел отношение двух ускорений, которые приобретает первое и второе тело, является величиной постоянной. Причем отношение этих ускорений не зависит от характера взаимодействия (рис. 4), следовательно, оно определяется самими телами, какой-то его характеристикой.

Рис. 4. Отношение ускорений не зависит от характера взаимодействия

Такая характеристика называется инертностью . Мерой инертности является масса. Поэтому отношение ускорений, приобретаемых телами в результате взаимодействия друг с другом, равно обратному отношению масс этих тел. Этот факт иллюстрирует эксперимент, в котором две тележки с разными массами () отталкиваются друг от друга с помощью упругой пластинки (рис. 5). В результате такого взаимодействия большее ускорение приобретет тележка с меньшей массой.

Рис. 5. Взаимодействие двух тел с разными массами

Рис. 6. Основной экспериментальный закон динамики

Закон, который описывает соотношение масс тел и ускорений, приобретенных в результате взаимодействия, называется основным экспериментальным законом динамики (рис. 6).

Более простая формулировка третьего закона Ньютона звучит так: сила действия равна силе противодействия.

Сила действия и сила противодействия - это всегда силы одной природы. Например, в предыдущем опыте сила действия первого динамометра на второй и сила действия второго динамометра на первый - это силы упругости; силы действия одного заряженного тела на другое и наоборот - это силы электрической природы.

Каждая из сил взаимодействия приложена к разным телам. Следовательно, силы взаимодействия между телами не могут компенсировать друг друга, хотя формально:

Рис. 7. Парадокс равнодействующей силы

Продемонстрируем опыт, который подтверждает третий закон Ньютона. До начала опыта весы находятся в равновесии: силы, действующие слева, равны всем силам, действующим справа (рис. 8).

Рис. 8. Силы, действующие слева, равны всем силам, действующим справа

Поместим грузик в сосуд с водой, не касаясь его стенок и дна. На грузик со стороны воды действует выталкивающая сила, направленная вертикально вверх. Но, по третьему закону Ньютона, силы обязательно возникают парами. Значит, со стороны грузика на воду начнет действовать равная по модулю силе Архимеда, но противоположно направленная сила, которая «толкнет» сосуд вниз. А значит, равновесие нарушится в сторону сосуда с грузиком (рис. 9).

Рис. 9. Равновесие нарушится в сторону сосуда с грузиком

Таким образом, первый закон Ньютона утверждает: если на тело не действует посторонние тела, то оно находится в состоянии покоя или равномерного прямолинейного движения относительно инерциальных систем отсчета. Из него следует, что причиной изменения скорости тела является сила. Второй закон Ньютона объясняет, как движется тело под действием силы. Он устанавливает количественное отношение между ускорением и силой.

В первом и во втором законах Ньютона рассматривается только одно тело. В третьем законе рассматривается взаимодействие двух тел с силами, одинаковыми по модулю и противоположными по направлению. Эти силы называют силами взаимодействия. Они направлены вдоль одной прямой и приложены к разным телам.

Некоторые особенности взаимодействия тел. Принцип относительности Галилея

Выводы, которые возникают при рассмотрении законов Ньютона:

1. Все силы в природе всегда возникают парами (рис. 10). Если появилась одна сила, то обязательно появится противоположно направленная ей вторая сила, действующая со стороны первого тела на второе. Обе эти силы одной природы.

Рис. 10. Все силы в природе всегда возникают парами

2. Каждая из сил взаимодействия приложена к разным телам, следовательно, силы взаимодействия между телами не могут компенсировать друг друга.

3. Ускорения тел в разных инерциальных системах отсчета одинаковы. Меняются перемещения, скорости, но ускорения - нет. Масса тел тоже не зависит от выбора системы отсчета, а значит, и сила не будет зависеть от этого. То есть в инерциальных системах отсчета все законы механического движения одинаковы - это и есть принцип относительности Галилея .

Разбор качественной задачи

1. Может ли человек поднять сам себя по веревке, перекинутой через блок, если второй конец веревки привязан к поясу человека, а блок неподвижен?

Рис. 11. Иллюстрация к задаче

С первого взгляда, кажется, что сила, с которой человек действует на веревку, равна силе, с которой веревка действует на человека (рис. 11). Но сила приложена через веревку к блоку, а сила - к человеку, следовательно, человек сможет поднять себя по этой веревке. Такая система не замкнутая. Система «человек - веревка» включает в себя блок.

2. Может ли человек толкать лодку, если он сам находится в этой лодке и упирается руками в один из бортов?

Рис. 12. Иллюстрация к задаче

В этой задаче система «человек - лодка» замкнутая (рис. 12), то есть сила, с которой человек давит на борт лодки, равна силе, с которой борт лодки действует на человека, но направлена в противоположную сторону. Никакого движения не будет.

3. Может ли человек вытащить самого себя из болота за волосы?

Рис. 13. Иллюстрация к задаче

Система также замкнутая. Сила, с которой рука действует на волосы, равна силе, с которой волосы действуют на руку, но направлена в противоположную сторону (рис. 14). Человек вытащить самого себя из болота за волосы не может.

Список литературы

  1. Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский. Физика 10. - М.: Просвещение, 2008.
  2. А.П. Рымкевич. Физика. Задачник 10-11. - М.: Дрофа, 2006.
  3. О.Я. Савченко. Задачи по физике. - М.: Наука, 1988.
  4. А.В. Перышкин, В.В. Крауклис. Курс физики. Т. 1. - М.: Гос. уч.-пед. изд. мин. просвещения РСФСР, 1957.
  1. Интернет-портал «raal100.narod.ru» ()
  2. Интернет-портал «physics.ru» ()
  3. Интернет-портал «bambookes.ru» ()
  4. Интернет-портал «bourabai.kz» ()

Домашнее задание

  1. Вопросы в конце параграфа 26 (стр. 70) - Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский. Физика 10 (см. список рекомендованной литературы)
  2. Третий закон Ньютона самим Ньютоном был сформулирован так: «Действию всегда есть равное и противоположное противодействие». Есть ли физическое различие между действием и противодействием? Что собой представляют «действие» и «противодействие» Ньютона?
  3. Верно ли утверждение: скорость тела определяется действующей на него силой?
  4. О ветровое стекло движущегося автомобиля ударился комар. Сравните силы, действующие на комара и автомобиль во время удара.

Об исторических конях запрета безопорного движения

Ньютон сформулировал три основных закона механики в 1689 году в своем фундаментальном труде «Математические начала натуральной философии», где в частности описывает знаменитый третий закон и следствия из него :
«Действию всегда есть равное и противоположное противодействие, иначе – взаимодействие двух тел друг на друга между собою равны и направлены в противоположные стороны.»

Чуть ниже Ньютон поясняет, почему он сформулировал свой третий закон механики именно в таком виде [там же]:
«Если какое-нибудь тело, ударившись в другое тело, изменяет своею силою его количество движения на сколько-нибудь, то оно претерпит силы второго рода в своем собственном количестве движения то же самое изменение, но обратно направленное, ибо давления этих тел друг на друга постоянно равны.»

Это пояснение указывает нам, что Ньютон выводил свой третий закон из анализа ударного взаимодействия двух тел.

Этот вывод подтверждается им самим в обосновании третьего следствия из рассматриваемого закона, где он описывает опыт с взаимодействием двух шаров с разной массой подвешенных на нитях. Иными словами третий закон Ньютона фактически есть следствие закона сохранения импульса, который описывается следующим выражением:

Р(11) + р(21) = р(12) + р(22)
где
р(11) – количество движения первого тела до взаимодействия;
р(21) – количество движения второго тела до взаимодействия;
р(12) – количество движения первого тела после взаимодействия;
р(22) – количество движения второго тела после взаимодействия.

Р = m * u
где
m – масса тела;
u – скорость тела.

Теперь рассмотрим случай, когда массу второго тела по отношению к первому можно рассматривать как бесконечность, например, стена дома, а второе тело небольшим, например, футбольный мяч, который не может причинить стене ни какого ущерба. Тогда скорости второго тела до взаимодействия и после равны между собой и соответственно равны нулю, так как стена ни до, ни после взаимодействия никуда не двигается. В этом случае закон сохранения импульса принимает вид:

Р(11) = р(12)
Разделив правую и левую часть уравнения на время получаем:
р(11)/t = р(12)/t
F(11) = F(12)
F(11) - F(12) = 0

В этом случае мы можем утверждать, что сила взаимодействия меча со стеной равна по модулю и обратна по направлению силе с которой стена воздействует на мяч. А это уже по сути своей и есть третий закон Ньютона.

И в этом выводе ни кто не видит никакого подвоха. Все математически верно и физически логично. Но в том то и дело, что в этом выводе на первое место вышла математическая интерпретация рассмотренного события, а его физическая суть оказалась не различимой.
На самом деле второе тело, в нашем случае это стена, физически никакого участия в формировании импульса обратного движения не принимает, оно лишь не позволило первому телу (мячу) двигаться дальше. Но в силу первого закона Ньютона, любое тело находится в прямолинейном движении до тех пор пока другое тело не станет для него препятствием и не изменит направление его движения. Поэтому второе тело став препятствием изменяет направление движения первого тела, но не сообщает ему ни какого дополнительного действия. Таким образом, мяч продолжает свое движение, только изменив его направление. Это хорошо видно на примере рикошета, когда одно тело отскакивает от другого под углом равным углу контакта.

Рассмотрим другую ситуацию. Два тела с одинаковой массой и противоположным направлением движения взаимодействуют друг с другом.
Тогда после столкновения мы имеем два события:
F(11) = F(12) и F(21) = F(22)
Иными словами оба тела сохранили свое движение, но при этом изменили его направление. Ни какого обмена импульсами в этом случае между ними не произошло.

Итак, подведем итог. Третий закон Ньютона, в том виде в котором он им сформулирован описывает лишь частный случай взаимодействия двух тел, при этом за его рамками остаются не рассмотренными множество других случаев такого взаимодействия. Например, мы ударим по стене не футбольным мечом, а огромным металлическим шаром, которым строители разрушают старые здания. В этом случае часть стены начнет двигаться вместе с ядром. То есть ни какого равного противодействия ядро не испытало на себе, а просто проломив преграду продолжило свое движение, а стена при этом просто исчезла с его пути.

Далее Ньютон приводит очень важное четвертое следствие из третьего закона :
«Центр тяжести системы двух или нескольких тел от взаимодействия друг друга не изменяет ни своего состояния покоя, ни движения; поэтому центр тяжести системы всех действующих друг на друга тел (при отсутствии внешних действий и препятствий) или находится в покое, или движется равномерно и прямолинейно.»

Пояснения этой формулировке Ньютон дает ниже [там же]:
«… так как в системе двух тел, действующих друг на друга, расстояние центра тяжести каждого из них до общего центра тяжести системы обратно пропорционально массам тел, то относительные количества движения, с которыми оба тела или приближаются к этому центру, или от него удаляются, между собой равны. В следствии этого, сказанный центр тяжести системы не претерпит от происходящих в противоположных направлениях равных изменений количеств движения, вызываемых действием тел друг на друга, ни ускорения, ни замедления в своем движении и не изменит своего состояния покоя или равномерного и прямолинейного движения.»

Поскольку четвертое следствие третьего закона Ньютона является краеугольным камнем всех официальных и не официальных противников безопорного движения рассмотрим его более подробно.
Первый абзац пояснения описывает случай, когда два тела связанных между собой пропорционально изменяют свое положение относительно общего центра тяжести системы, при чем эти изменения равны по модулю и обратны по направлению. Иными словами исходя из формулировки третьего закона, любое действие внутри системы вызывает отклик равный по модулю и противоположный по направлению, в результате суммарный импульс всей системы равен нулю.
Сегодня теоретическая механика формулирует это положение более четко:
Если главный вектор, и главный крутящий момент системы равны нулю, то система находится либо в покое, либо в равномерном прямолинейном движении, и никакое преобразование внутренних сил не может вывести её из этого состояния.

После этого реализацию безопорного движения можно считать бесполезным занятием. Как собственно и считают большинство ученых и специалистов, поэтому до сих пор этот вид движения человечеством и не освоен.
Но, слава богу, среди специалистов всегда есть сомневающиеся, желающие проверить верность общеизвестных истин и среди них надо назвать нашего соотечественника, которого сегодня можно с уверенностью назвать патриархом безопорного движения в нашей стране, а возможно и за её пределами, – это Владимир Николаевич Толчин. Он не только не был признан современниками, но фактически был ими ошельмован. Но именно он своим подвижническим трудом заложил зерна сомнения в непогрешимости третьего закона Ньютона. В дальнейшем, у него нашлось много последователей, но ни кто из них не осмелился сказать: «А король то голый». Сегодня я впервые предпринимаю эту попытку.

Рассматривая внутреннюю сущность третьего закона Ньютона, мы приходим к выводу, что он описывает лишь частный случай общего взаимодействия двух тел. Именно в рамках этого частного случая и надо рассматривать четвертое следствие этого закона. То есть исходя из предположения, что все внутренние силы механической системы уравновешены между собой и их главный вектор и главный крутящий момент равны нулю. Но если внутри системы создать условие, когда один элемент относительно других будет обладать некомпенсированной силой, то либо главный вектор, либо главный крутящий момент будут отличны от нуля.

Поэтому третий закон Ньютона должен быть сформулирован по иному, через условие векторной суммы внутренних сил:
1. Если векторная сумма внутренних сил механической системы равна нулю, то она находится в покое, либо равномерном прямолинейном движении, т.е. в уравновешенном пространственном положении.
2. Если векторная сумма внутренних сил механической системы равна нулю и при этом она испытывает на себе воздействие внешних сил, то она может изменить свое уравновешенное положение в пространстве.
3. Если векторная сумма внутренних сил механической системы отлична от нуля, то она может изменить свое уравновешенное положение в пространстве не зависимо от воздействия на неё внешних сил.

Таким образом, третий закон механики в обобщенном виде не запрещает безопорного движения, а лишь определяет условия, при котором оно возможно. Внутри механической системы должна существовать внутренняя некомпенсированная сила, которая влияет на главный вектор механической системы и делает его отличным от нуля.

1. Ньютон Исаак. Математические начала натуральной философии. – М.: Наука, 1989.

Рецензии

«Поэтому второе тело, став препятствием, изменяет направление движения первого тела, но не сообщает ему никакого дополнительного действия»».
Изменение направления движения мяча – это приложение силы стены к мячу. Когда одно тело (поверхность) становится для другого препятствием – это значит, что тело (поверхность) воздействует на другое тело, то есть прикладывает силу к другому телу. Какие ещё «дополнительные» действия Вы ожидаете?

«…оба тела сохранили свое движение, но при этом изменили его направление. Никакого обмена импульсами в этом случае между ними не произошло».
Странный вывод! Импульс величина векторная, а значит, изменились импульсы у каждого тела – на обратные по направлению и равные по модулю, то есть как раз произошёл обмен. Кроме того, не «сохранили движение», а продолжили после столкновения, сохранив скорость движения, или даже вновь её достигнув (после лобового столкновении с остановкой).

Если мы ударим по стене не мячом, а металлическим строительным шаром, то стена так же противодействует шару, но сила воздействия шара превышает силы связи (прочности) внутри стены, поэтому часть стены начнет двигаться вместе с ядром, противодействуя ему и при этом отрываясь от остальной целой стены. Ядро, проломив преграду, продолжит свое движение лишь на то расстояние, которое позволит ему противодействие выломанного куска стены.

Таким образом, у нас нет оснований делать вывод, что Третий закон описывает лишь частный случай общего взаимодействия двух тел. А благодаря приведённому Вами четвертому следствию из третьего закона: «Центр тяжести … системы всех действующих друг на друга тел (при отсутствии внешних действий и препятствий) или находится в покое, или движется равномерно» мы имеем условие применимости этого закона – отсутствие внешнего воздействия. Поэтому новая формулировка закона бесполезна, а пункт 3 (Если векторная сумма внутренних сил механической системы отлична от нуля, то система может изменить свое уравновешенное положение в пространстве независимо от воздействия на неё внешних сил) бессмысленен, поскольку векторная сумма внутренних сил системы может стать отличной от нуля только при внешнем воздействии.
Безопорное движение невозможно по одной очень простой причине – любая система имеет основание, поэтому движение в любой системе опирается на это основание.
С уважением,