Полная механическая энергия замкнутой. Полная механическая энергия тел и систем. Чему равна механическая энергия


Механическая энергия системы существует в кинетическом и потенциальном виде. Кинетическая энергия появляется, когда объект или система начинает двигаться. Потенциальная энергия возникает при взаимодействии объектов или систем друг с другом. Она не появляется и не исчезает бесследно и, зачастую, не зависит от работы. Однако она может переходить из одной формы в другую.

Например, шар для боулинга, находясь на уровне трех метров над землей, не имеет кинетической энергии, потому что он не двигается. У него есть большое количество потенциальной энергии (в этом случае, гравитационной энергии), которая будет преобразована в кинетическую, если шар начнет падать.

Знакомство с различными видами энергии начинается в средних классах школы. Детям, как правило, легче визуализировать и легко понять принципы механических систем, не вдаваясь в подробности. Основные расчеты в таких случаях могут быть сделаны без использования сложных вычислений. В большинстве простых физических задач, механическая система остается замкнутой и факторы, которые уменьшают значение общей энергии системы, не принимаются во внимание.

Механическая, химическая и ядерная энергия системы

Существует множество различных видов энергии, и иногда, может быть, трудно правильно отличить один из них от другого. Химическая энергия, например, представляет собой результата взаимодействия молекул веществ между собой. Ядерная энергия появляется во время взаимодействия между частицами в ядре атома. Механическая энергия, в отличие от других, как правило, не учитывает молекулярный состав объекта и учитывает только их взаимодействие на макроскопическом уровне.

Это приближение предназначено для упрощения расчетов механической энергии сложных систем. Объекты в этих системах обычно рассматриваются в виде однородных тел, а не как сумма миллиардов молекул. Расчет как кинетической, так и потенциальной энергии одного объекта является простой задачей. Расчет тех же видов энергии для миллиардов молекул будет крайне затруднительным. Без упрощения деталей в механической системе, ученые должны были бы изучить отдельные атомы, а также все взаимодействия и силы, существующие между ними. Этот подход, как правило, применяется элементарных частиц.

Преобразование энергии

Механическая энергия может быть преобразована в другие виды энергии с использованием специального оборудования. Например, генераторы предназначены для превращения механической работы в электричество. Другие виды энергии также могут быть преобразованы в механическую энергию. Например, двигатель внутреннего сгорания в автомобиле преобразует химическую энергию топлива в механическую, используемую для движения.

Слово "энергия" происходит из греческого языка и имеет значение «действие", "деятельность». Само понятие было впервые введено английским физиком в начале XIX века. Под «энергией» понимается способность обладающего этим свойством тела совершать работу. Тело способно совершать тем большую работу, чем большей энергией оно обладает. Существует несколько ее видов: внутренняя, электрическая, ядерная и механическая энергии. Последняя чаще других встречается в нашей повседневной жизни. Человек с давних времен научился приспосабливать ее под свои потребности, преобразуя в механическую работу при помощи разнообразных приспособлений и конструкций. Мы можем также преобразовывать одни виды энергии в другие.

В рамках механики(один из механическая энергия - это физическая величина, которая характеризует способность системы (тела) к совершению механической работы. Следовательно, показателем присутствия данного вида энергии является наличие некоторой скорости движения тела, обладая которой, оно может совершать работу.

Виды механической В каждом случае кинетическая энергия - величина скалярная, складывающаяся из суммы кинетических энергий всех материальных точек, составляющих конкретную систему. Тогда как потенциальная энергия одиночного тела (системы тел) зависит от взаимного положения его (их) частей в рамках внешнего силового поля. Показателем изменения потенциальной энергии служит совершенная работа.

Тело обладает кинетической энергией, если оно находится в движении (ее иначе можно назвать энергией движения), а потенциальной - если оно поднято над поверхностью земли на какую-то высоту (это энергия взаимодействия). Измеряется механическая энергия (как и прочие виды) в Джоулях (Дж).

Для нахождения энергии, которой обладает тело, нужно найти работу, затрачиваемую на перевод этого тела в нынешнее состояние из состояния нулевого (когда энергия тела приравнивается к нулю). Далее приведены формулы, согласно которым может быть определена механическая энергия и ее виды:

Кинетическая - Ek=mV 2 /2;

Потенциальная - Ep = mgh.

В формулах: m - масса тела, V - скорость его g - ускорение падения, h - высота, на которую тело поднято над поверхностью земли.

Нахождение для системы тел заключается в выявлении суммы ее потенциальной и кинетической составляющих.

Примерами того как механическая энергия может применяться человеком служат и изобретенные в древнейшие времена орудия (нож, копье и т.д.), и самые современные часы, самолеты, прочие механизмы. Как источники данного вида энергии и выполняемой ею работы могут выступать силы природы (ветер, морские течение рек) и физические усилия человека или животных.

Сегодня очень часто систем (например, энергия вращающегося вала) подлежит последующему преобразованию при производстве электрической энергии, для чего используют генераторы тока. Разработано множество устройств (двигателей), способных выполнять непрерывное превращение в механическую энергию потенциала рабочего тела.

Существует физический закон сохранения ее, согласно которому в замкнутой системе тел, где нет действия сил трения и сопротивления, постоянной величиной будет сумма обоих видов ее (Ek и Ep) всех составляющих ее тел. Такая система идеальна, но в реальности подобных условий нельзя достичь.

Энергия. Закон сохранения полной механической энергии (повторяем понятия).

Энергия - это скалярная физическая величина которая является мерой различных форм движения материи и является характеристикой состояния системы (тела) и определяет максимальную работу, которую может выполнить тело (система).

Тела обладают энергией:

1. кинетической энергией - вследствие движения массивного тела

2. потенциальной энергией - в результате взаимодействия с другими телами, полями;

3. тепловой (внутренней) энергией - вследствие хаотического движения и взаимодействия своих молекул, атомов, электронов...

Полную механическую энергию составляют кинетическая и потенциальная энергия.

Кинетическая энергия - энергия движения.

Кинетическая энергия массивного тела m, которое движется поступательно со скоростью v ищут по формуле:

Ек = К = mv2 / 2 = p2 / (2m)

где р = mv - количество движения или импульс тела.

Кинетическая энергия системы n массивных тел

где Ки - кинетическая энергия i-го тела.

Значение кинетической энергии материальной точки или тела зависит от выбора системы отсчета, но не может быть отрицательной:

Теорема о кинетической энергии:

Изменение? К кинетической энергии тела при его переходе из одного положения в другое равно работе А всех сил, действующих на тело:

А =? К = К2 - К1.

Кинетическая энергия массивного тела с моментом инерции J которое вращается с угловой скоростью ω ищут по формуле:

Коб = Jω2 / 2 = L2 / (2J)

где L = Jω - момент количества движения (или момент импульса) тела.

Полную кинетическую энергию тела которое движется одновременно поступательно и вращательно ищут по формуле:

К = mv2 / 2 + Jω2 / 2.

Потенциальная энергия - энергия взаимодействия.

Потенциальной называют часть механической энергии, которая зависит от взаимного расположения тел в системе и их положение во внешнем силовом поле.

Потенциальная энергия тела в однородном поле тяготения Земли (у поверхности, g = const):

(*) - Это энергия взаимодействия тела с Землей;

Это работа силы тяжести при опускании тела на нулевой уровень.

Значение П = mgH может быть положительным, отрицательным в зависимости от выбора системы отсчета.

Потенциальная энергия упруго деформированного тела (пружины).

П = КХ2 / 2: - это энергия взаимодействия частиц тела;

Это работа силы упругости при переходе в состояние, когда деформация равна нулю.

Потенциальная энергия тела в гравитационном поле другого тела.

П = - G m1m2 / R - потенциальная энергия тела m2 в гравитационном поле тела m1 - где G - гравитационная постоянная, R - расстояние между центрами взаимодействующих тел.

Теорема о потенциальной энергии:

Работа А потенциальных сил равна изменению? П потенциальной энергии системы, при переходе из начального состояния в конечное, взятой с обратным знаком:

А = -? П = - (П2 - П1).

Основное свойство потенциальной энергии:

В состоянии равновесия потенциальная энергия принимает минимальное значение.

Закон сохранения полной механической энергии.

1. Система замкнутая, консервативная.

Механическая энергия консервативной системы тел остается постоянной в процессе движения системы:

Е = К + П = const.

2. Система замкнутая, неконсервативной.

Если система взаимодействующих тел замкнутая но неконсервативной, то ее механическая энергия не сохраняется. Закон изменения полной механической энергии говорит:

Изменение механической энергии такой системы равна работе внутренних непотенциальные сил:

Примером такой системы является система, в которой присутствуют силы трения. Для такой системы справедливо закон сохранения полной энергии:

3. Система незамкнутая, неконсервативной.

Если система взаимодействующих тел незамкнутая и неконсервативных, то ее механическая энергия не сохраняется. Закон изменения полной механической энергии говорит:

Изменение механической энергии такой системы равна суммарной работе внутренних и внешних непотенциальные сил:

При этом изменяется внутренняя энергия системы.

1. Рассмотрим свободное падение тела с некоторой высоты h относительно поверхности Земли (рис. 77). В точке A тело неподвижно, поэтому оно обладает только потенциальной энергией.В точке B на высоте h 1 тело обладает и потенциальной энергией, и кинетической энергией, поскольку тело в этой точке имеет некоторую скорость v 1 . В момент касания поверхности Земли потенциальная энергия тела равна нулю, оно обладает только кинетической энергией.

Таким образом, во время падения тела его потенциальная энергия уменьшается, а кинетическая увеличивается.

Полной механической энергией E называют сумму потенциальной и кинетической энергий.

E = E п + E к.

2. Покажем, что полная механическая энергия системы тел сохраняется. Рассмотрим еще раз падение тела на поверхность Земли из точки A в точку C (см. рис. 78). Будем считать, что тело и Земля представляют собой замкнутую, систему тел, в которой действуют только консервативныесилы, в данном случае сила тяжести.

В точке A полная механическая энергия тела равна его потенциальной энергии

E = E п = mgh .

В точке B полная механическая энергия тела равна

E = E п1 + E к1 .
E п1 = mgh 1 , E к1 = .

Тогда

E = mgh 1 + .

Скорость тела v 1 можно найти по формуле кинематики. Поскольку перемещение тела из точки A в точку B равно

s = h h 1 = , то= 2g (h h 1).

Подставив это выражение в формулу полной механической энергии, получим

E = mgh 1 + mg (h h 1) = mgh .

Таким образом, в точке B

E = mgh .

В момент касания поверхности Земли (точка C ) тело обладает только кинетической энергией, следовательно, его полная механическая энергия

E = E к2 = .

Скорость тела в этой точке можно найти по формуле= 2gh , учитывая, что начальная скорость тела равна нулю. После подстановки выражения для скорости в формулу полной механической энергии получим E = mgh .

Таким образом, мы получили, что в трех рассмотренных точках траектории полная механическая энергия тела равна одному и тому же значению: E = mgh . К такому же результату мы придем, рассмотрев другие точки траектории тела.

Полная механическая энергия замкнутой системы тел, в которой действуют только консервативные силы, остается неизменной при любых взаимодействиях тел системы.

Это утверждение является законом сохранения механической энергии.

3. В реальных системах действуют силы трения. Так, при свободном падении тела в рассмотренном примере (см. рис. 78) действует сила сопротивления воздуха, поэтому потенциальная энергия в точке A больше полной механической энергии в точке B и в точке C на величину работы, совершаемой силой сопротивления воздуха: DE = A . При этом энергия не исчезает, часть механической энергии превращается во внутреннюю энергию тела и воздуха.

4. Как вы уже знаете из курса физики 7 класса, для облегчения труда человека используют различные машины и механизмы, которые, обладая энергией, совершают механическую работу. К таким механизмам относят, например, рычаги, блоки, подъемные краны и др. При совершении работы происходит преобразование энергии.

Таким образом, любая машина характеризуется величиной, показывающей, какая часть передаваемой ей энергии используется полезно или какая часть совершенной (полной) работы является полезной. Эта величина называется коэффициентом полезного действия (КПД).

Коэффициентом полезного действия h называют величину, равную отношению полезной работы A n к полной работе A .

Обычно КПД выражают в процентах.

h = 100%.

5. Пример решения задачи

Парашютист массой 70 кг отделился от неподвижно висящего вертолета и, пролетев 150 м до раскрытия парашюта, приобрел скорость 40 м/с. Чему равна работа силы сопротивления воздуха?

Дано :

Решение

m = 70 кг

v 0 = 0

v = 40 м/с

sh = 150 м

За нулевой уровень потенциальной энергии выберем уровень, на котором парашютист приобрел скорость v . Тогда при отделении от вертолета в начальном положении на высоте h полная механическая энергия парашютиста, равна его потенциальной энергии E=E п = mgh , поскольку его кинети-

A ?

ческая энергия на данной высоте равна нулю. Пролетев расстояние s = h , парашютист приобрел кинетическую энергию, а его потенциальная энергия на этом уровне стала равна нулю. Таким образом, во втором положении полная механическая энергия парашютиста равна его кинетической энергии:

E = E к = .

Потенциальная энергия парашютиста E п при отделении от вертолета не равна кинетической E к, поскольку сила сопротивления воздуха совершает работу. Следовательно,

A = E к – E п;

A =– mgh .

A =– 70 кг 10 м/с 2 150 м = –16 100 Дж.

Работа имеет знак «минус», поскольку она равна убыли полной механической энергии.

Ответ: A = –16 100 Дж.

Вопросы для самопроверки

1. Что называют полной механической энергией?

2. Сформулируйте закон сохранения механической энергии.

3. Выполняется ли закон сохранения механической энергии, если на тела системы действует сила трения? Ответ поясните.

4. Что показывает коэффициент полезного действия?

Задание 21

1. Мяч массой 0,5 кг брошен вертикально вверх со скоростью 10 м/с. Чему равна потенциальная энергия мяча в высшей точке подъема?

2. Спортсмен массой 60 кг прыгает с 10-метровой вышки в воду. Чему равны: потенциальная энергия спортсмена относительно поверхности воды перед прыжком; его кинетическая энергия при вхождении в воду; его потенциальная и кинетическая энергия на высоте 5 м относительно поверхности воды? Сопротивлением воздуха пренебречь.

3. Определите коэффициент полезного действия наклонной плоскости высотой 1 м и длиной 2 м при перемещении по ней груза массой 4 кг под действием силы 40 Н.

Основное в главе 1

1. Виды механического движения.

2. Основные кинематические величины (табл. 2).

Таблица 2

Название

Обозначение

Что характери- зует

Едини ца изме- рения

Способ измерения

Вектор или скаляр

Относительная или абсолютная

Координат а

x , y , z

положение тела

м

Линейка

Скаляр

Относительная

Путь

l

изменение положения тела

м

Линейка

Скаляр

Относительная

Перемеще ние

s

изменение положения тела

м

Линейка

Вектор

Относительная

Время

t

длительность процесса

с

Секундомер

Скаляр

Абсолютная

Скорость

v

быстроту изменения положения

м/с

Спидометр

Вектор

Относительная

Ускорение

a

быстроту изменения скорости

м/с2

Акселерометр

Вектор

Абсолютная

3. Основные уравнения движения (табл. 3).

Таблица 3

Прямолинейное

Равномерное по окружности

Равномерное

Равноускоренное

Ускорение

a = 0

a = const; a =

a = ; a = w2R

Скорость

v = ; vx =

v = v 0 + at ;

vx = v 0x + axt

v = ; w =

Перемещение

s = vt ; sx =vxt

s = v 0t + ; sx =vxt+

Координата

x = x 0 + vxt

x = x 0 + v 0xt +

4. Основные графики движения.

Таблица 4

Вид движения

Модуль и проекция ускорения

Модуль и проекция скорости

Модуль и проекция перемещения

Координата*

Путь*

Равномерное

Равноускоренно е

5. Основные динамические величины.

Таблица 5

Название

Обозна- чение

Едини ца изме- рения

Что характеризует

Способ измерения

Вектор или скаляр

Относитель ная или абсолютная

Масса

m

кг

Инертность

Взаимодействие, взвешивание на рычажных весах

Скаляр

Абсолютная

Сила

F

Н

Взаимодействие

Взвешивание на пружинных весах

Вектор

Абсолютная

Импульс тела

p = m v

кгм/с

Состояние тела

Косвенный

Вектор

Относительна я

Импульс силы

F t

Нс

Изменение состояния тела (изменение импульса тела)

Косвенный

Вектор

Абсолютная

6. Основные законы механики

Таблица 6

Название

Формула

Примечание

Границы и условия применимости

Первый закон Ньютона

Устанавливаетсуществование инерциальных систем отсчета

Справедливы: в инерциальных системах отсчета; для материальных точек; для тел, движущихся со скоростями, много меньшими скорости света

Второй закон Ньютона

a =

Позволяет определить силу, действующую на каждое из взаимодействующих тел

Третий закон Ньютона

F 1 = F 2

Относится к обоим взаимодействующим телам

Второй закон Ньютона (другая формулировка)

m v m v 0 = F t

Устанавливает изменение импульса тела при действии на него внешней силы

Закон сохранения импульса

m 1 v 1 + m 2 v 2 = = m 1 v 01 + m 2 v 02

Справедлив для замкнутых систем

Закон сохранения механической энергии

E = E к + E п

Справедлив для замкнутых систем, в которых действуют консервативные силы

Закон изменения механической энергии

A = D E = E к + E п

Справедлив для незамкнутых систем, в которых действуют неконсервативные силы

7. Силы в механике.

8. Основные энергетические величины.

Таблица 7

Название

Обознач ение

Едини цаbиз ме- рения

Что характеризует

Связь с другими величинами

Вектор или скаляр

Относительная или абсолютная

Работа

A

Дж

Измерение энергии

A =Fs

Скаляр

Абсолютная

Мощность

N

Вт

Быстроту совершения работы

N =

Скаляр

Абсолютная

Механическа я энергия

E

Дж

Способность совершить работу

E = E п + E к

Скаляр

Относительная

Потенциальн ая энергия

E п

Дж

Положение

E п = mgh

E п =

Скаляр

Относительная

Кинетическа я энергия

E к

Дж

Положение

E к =

Скаляр

Относительная

Коэффициен т полезного действия

Какая часть совершенной работы является полезной


Системой частиц может быть любое тело, газ, механизм, Солнечная система и т. д.

Кинетическая энергия системы частиц, как упоминалось выше, определяется суммой кинетических энергий частиц, входящих в данную систему.

Потенциальная энергия системы складывается из собственной потенциальной энергии частиц системы, и потенциальной энергии системы во внешнем поле потенциальных сил .

Собственная потенциальная энергия обусловлена взаимным расположением частиц, принадлежащих данной системе (т.е. ее конфигурацией), между которыми действуют потенциальные силы, а также взаимодействием между отдельными частями системы. Можно показать, что работа всех внутренних потенциальных сил при изменении конфигурации системы равна убыли собственной потенциальной энергии системы:

. (3.23)

Примерами собственной потенциальной энергии являются энергия межмолекулярного взаимодействия в газах и жидкостях, энергия электростатического взаимодействия неподвижных точечных зарядов. Примером внешней потенциальной энергии является энергия тела, поднятого над по­верхностью Земли, так как она обусловлена действием на тело пос­тоянной внешней потенциальной силы - силы тяжести.

Разделим силы, действующие на систему частиц, на внутренние и внешние, а внутренние - на потенциальные и непотенциальные. Представим (3.10) в виде

Перепишем (3.24) с учетом (3.23):

Величина, сумма кинетической и собственной по­тенциальной энергии системы, является полной механической эне­ргией системы . Перепишем (3.25) в виде:

т.е., приращение механической энергии системы равно алгебраической сумме работ всех внутренних непотенциальных сил и всех внешних сил.

Если в (3.26) положить A внешн =0 (это равенство означает, что система является замкнутой) и (что равносильно отсутствию внутренних непотенциальных сил), то получим:

Оба равенства (3.27) являются выражениями закона сохранения механической энергии : механическая энергия замкнутой системы частиц, в которой отсутствуют непотенциальные силы, сохраняется в процес­се движения, Такую систему называют консервативной. С достаточной степенью точности замкнутой консервативной системой можно считать Солнечную систему. При движении замкнутой консервативной си­стемы сохраняется полная механическая энергия, в то время как кинетическая и потенциальная энергия изме­няются. Однако эти изменения такие, что приращение одной из них в точности равно уменьшению другой.

Если замк­нутая система не является консервативной, т. е. в ней действуют непотенциальные силы, например, силы трения, то механическая энергия такой систе­мы, убывает, так как расходуется на работу против этих сил. Закон сохранения механической энергии является лишь отдельным проявлением существующего в природе универсального закона сохранения и превращения энер­гии: энергия никогда не создается и не уничтожается, она мо­жет только переходить из одной формы в другую или об­мениваться между отдельными частями материи. При этом понятие энергии расширяется введением понятий о новых формах ее кроме механической, - энергии электромагнитного поля, химической энергии, ядерной и др. Универсальный закон сохранения и превращения энер­гии охватыва­ет те физические явления, на которые законы Ньютона не распространяются. Этот закон имеет самостоятельное значение, так как получен на основе обобщений опытных фактов.


Пример 3.1 . Найти работу, совершаемую упругой силой, действующей на материальную точку вдоль некоторой оси х. Сила подчиняется закону , где х - смещение точки из начального положения (в котором.х=x 1), - единичный вектор в направлении оси х.

Найдем элементарную работу упругой силы при перемещении точки на величину dx. В формулу (3.1) для элементарной работы подставим выражение для силы:

.

Затем найдем работу силы, выполним интегрирование вдоль оси x в пределах от x 1 до x :

. (3.28)

Формулу (3.28) можно применить для определения потенциальной энергии сжатой или растянутой пружины, которая первоначально находится в свободном состоянии, т.е. x 1 =0 (коэффициент k называется коэффициеном жесткости пружины). Потенциальная энергия пружины при сжатии или растяжении равна работе против упругих сил, взятой с обратным знаком:

.

Пример 3.2 Применение теоремы об изменении кинетической энергии.

Найти минимальную скорость u, которую надо сообщить снаряду , чтобы он поднялся на высоту H над поверхностью Земли (сопротивлением атмосферного воздуха пренебречь ).

Направим ось координат от центра Земли по направлению полета снаряда. Начальная кинетическая энергия снаряда будет затрачена на работу против потенциальных сил гравитационного притяжения Земли. Формулу (3.10) с учетом формулы (3.3) можно представить в виде:

.

Здесь A – работа против силы гравитационного притяжения Земли (, g гравитационная постоянная, r – расстояние, отсчитываемое от центра Земли). Знак минус появляется из-за того, что проекция силы гравитационного притяжения на направление движения снаряда отрицательна. Интегрируя последнее выражение и учитывая, что T(R+H)=0, T(R) = mυ 2 /2 , получим:

Решив полученное уравнение относительно υ, найдем:

где - ускорение свободного падения на поверхности Земли.